Last updated: 2022-04-01

Checks: 7 0

Knit directory: R_gene_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200917) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 368c81a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/Brec_R1.txt
    Untracked:  data/Brec_R2.txt
    Untracked:  data/CR15_R1.txt
    Untracked:  data/CR15_R2.txt
    Untracked:  data/CR_14_R1.txt
    Untracked:  data/CR_14_R2.txt
    Untracked:  data/KS_R1.txt
    Untracked:  data/KS_R2.txt
    Untracked:  data/NBS_PAV.txt.gz
    Untracked:  data/NLR_PAV_GD.txt
    Untracked:  data/NLR_PAV_GM.txt
    Untracked:  data/PAVs_newick.txt
    Untracked:  data/PPR1.txt
    Untracked:  data/PPR2.txt
    Untracked:  data/SNPs_lee.id.biallic_maf_0.05_geno_0.1.vcf.gz
    Untracked:  data/SNPs_newick.txt
    Untracked:  data/bac.txt
    Untracked:  data/brown.txt
    Untracked:  data/cy3.txt
    Untracked:  data/cy5.txt
    Untracked:  data/early.txt
    Untracked:  data/flowerings.txt
    Untracked:  data/foregeye.txt
    Untracked:  data/height.txt
    Untracked:  data/inds.txt
    Untracked:  data/late.txt
    Untracked:  data/mature.txt
    Untracked:  data/motting.txt
    Untracked:  data/mvp.kin.bin
    Untracked:  data/mvp.kin.desc
    Untracked:  data/oil.txt
    Untracked:  data/paperinds.txt
    Untracked:  data/pdh.txt
    Untracked:  data/protein.txt
    Untracked:  data/rust_tan.txt
    Untracked:  data/salt.txt
    Untracked:  data/seedq.txt
    Untracked:  data/seedweight.txt
    Untracked:  data/snp.gds
    Untracked:  data/stem_termination.txt
    Untracked:  data/sudden.txt
    Untracked:  data/virus.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gwas.Rmd) and HTML (docs/gwas.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 368c81a Philipp Bayer 2022-04-01 New analysis
html 41cccae Philipp Bayer 2022-03-30 Build site.
Rmd 768d0c9 Philipp Bayer 2022-03-30 update GWAS with Manhattan plots
html 33c71ae Philipp Bayer 2021-03-31 Build site.
Rmd e6b537a Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html 34cbc3e Philipp Bayer 2021-03-31 Build site.
Rmd 6f42f60 Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html e294dc6 Philipp Bayer 2021-03-31 Build site.
Rmd 6a6bd44 Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html e739391 Philipp Bayer 2021-03-31 Build site.
Rmd dd3ab21 Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html bffb5ca Philipp Bayer 2021-03-31 Build site.
Rmd 989263f Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html 0a3fa56 Philipp Bayer 2021-03-31 Build site.
Rmd 6bd1532 Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html 0f3717a Philipp Bayer 2021-03-31 Build site.
Rmd 53bc5e5 Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html 046f90d Philipp Bayer 2021-03-31 Build site.
Rmd c2ccdb9 Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html e103452 Philipp Bayer 2021-03-31 Build site.
Rmd 8c196dc Philipp Bayer 2021-03-31 wflow_publish(“analysis/gwas.Rmd”)
html cf8b8b7 Philipp Bayer 2021-03-30 Build site.
Rmd de49b61 Philipp Bayer 2021-03-30 wflow_publish(“analysis/gwas.Rmd”)
html 14c7314 Philipp Bayer 2021-03-30 Build site.
Rmd bc094e2 Philipp Bayer 2021-03-30 wflow_publish(files = c(“analysis/gwas.Rmd”))
html d88c271 Philipp Bayer 2021-03-30 Build site.
Rmd c36de75 Philipp Bayer 2021-03-30 wflow_publish(c(“analysis/gwas.Rmd”))
html 51edc1f Philipp Bayer 2021-03-30 Build site.
Rmd e1faf81 Philipp Bayer 2021-03-30 wflow_publish(c(“analysis/gwas.Rmd”, “analysis/index.Rmd”))
html c769673 Philipp Bayer 2021-03-29 Build site.
Rmd 764ad7b Philipp Bayer 2021-03-29 wflow_publish(“analysis/gwas.Rmd”)
Rmd bd5506f Philipp Bayer 2021-03-29 missing commits
html 2844fd3 Philipp Bayer 2021-02-09 Add changes, add missing yield
html e519122 Philipp Bayer 2020-12-11 Build site.
html 83dc49a Philipp Bayer 2020-12-11 Trace deleted files
Rmd dae157b Philipp Bayer 2020-09-24 Update of analysis
html dae157b Philipp Bayer 2020-09-24 Update of analysis

Let’s run a GWAS via GAPIT using the NLR genes as input, and the PCs calculated using SNPs

library(GAPIT3)
library(SNPRelate)
library(ggtext)
library(tidyverse)
library(ggsignif)
library(cowplot)
library(ggsci)
library(patchwork)
library(broom)
library(ggpubr)
library(kableExtra)

Running GAPIT

First, we have to make the principal components - making them based on NLR genes alone is probably garbage. Let’s make them based on all publicly available SNPs from here.

I ran the following on a bigger server which is why it’s marked as not to run when I rerun workflowr.

if (!file.exists('data/SNPs_lee.id.biallic_maf_0.05_geno_0.1.vcf.gz')) {
  download.file('https://research-repository.uwa.edu.au/files/89232545/SNPs_lee.id.biallic_maf_0.05_geno_0.1.vcf.gz', 'data/SNPs_lee.id.biallic_maf_0.05_geno_0.1.vcf.gz')
}

#We have to convert the big vcf file

if (!file.exists("data/snp.gds")) {
  vcf.fn <- 'data/SNPs_lee.id.biallic_maf_0.05_geno_0.1.vcf.gz'
  snpgdsVCF2GDS(vcf.fn, "data/snp.gds", method="biallelic.only")
}

genofile <- snpgdsOpen('data/snp.gds')

# Let's prune the SNPs based on 0.2 LD

snpset <- snpgdsLDpruning(genofile, ld.threshold=0.2, autosome.only=F)
snpset.id <- unlist(unname(snpset))

# And now let's run the PCA
pca <- snpgdsPCA(genofile, snp.id=snpset.id, num.thread=2, autosome.only=F)

saveRDS(pca, 'data/pca.rds')

OK let’s load the results I made on the remote server and saved in a file:

# load PCA
pca <- readRDS('data/pca.rds')

A quick diagnostic plot

tab <- data.frame(sample.id = pca$sample.id,
    EV1 = pca$eigenvect[,1],    # the first eigenvector
    EV2 = pca$eigenvect[,2],    # the second eigenvector
    stringsAsFactors = FALSE)
plot(tab$EV2, tab$EV1, xlab="eigenvector 2", ylab="eigenvector 1")

head(tab)
  sample.id           EV1         EV2
1     AB-01 -0.0096910924  0.01605862
2     AB-02  0.0061795109  0.01644249
3     BR-01 -0.0173940264 -0.01621850
4     BR-02 -0.0134548060 -0.01678429
5     BR-03 -0.0025329218 -0.03735107
6     BR-04 -0.0003749604 -0.03575687

Alright, now we have SNP-based principal components. We’ll use the first two as our own covariates in GAPIT.

I wrote a Python script which takes the NLR-only PAV table and turns that into HapMap format with fake SNPs, see code/transformToGAPIT.py.

myY <- read.table('data/yield.txt', head = TRUE)
myGD <- read.table('data/NLR_PAV_GD.txt', head = TRUE)
myGM <- read.table('data/NLR_PAV_GM.txt', head = TRUE)

GAPIT prints a LOT of stuff so I turn that off here, what’s important are all the output files.

myGAPIT <- GAPIT(
  Y=myY[,c(1,2)],
  CV = tab,
  GD = myGD,
  GM = myGM,
  PCA.total = 0, # turn off PCA calculation as I use my own based on SNPs
  model = c('GLM', 'MLM', 'MLMM', 'FarmCPU')
)
if (! dir.exists('output/GAPIT')){
  dir.create('output/GAPIT')
}

Analysing GAPIT output

R doesn’t have an in-built function to move files, so I copy and delete the output files here. There’s a package which adds file-moving but I’m not adding a whole dependency just for one convenience function, I’m not a Node.js person ;)

for(file in list.files('.', pattern='GAPIT*')) {
  file.copy(file, 'output/GAPIT')
  file.remove(file)
}

Let’s make a table of the statistically significantly associated SNPs.

results_files <- list.files('output/GAPIT/', pattern='*GWAS.Results.csv', full.names = T)

Let’s use FDR < 0.05 as cutoff

results_df <- NULL
for(i in seq_along(results_files)) {
  this_df <- read_csv(results_files[i])
  filt_df <- this_df %>% filter(`FDR_Adjusted_P-values` < 0.05)
  
  # pull the method name out and add to dataframe
  this_method <- str_split(results_files[i], "\\.")[[1]][2]
  filt_df <- filt_df %>% add_column(Method = this_method, .before = 'SNP')
  if (is.null(results_df)) {
    results_df <- filt_df
  } else {
    results_df <- rbind(results_df, filt_df)
  }
}
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (7): Chromosome, Position, P.value, maf, nobs, FDR_Adjusted_P-values, ef...
lgl (2): Rsquare.of.Model.without.SNP, Rsquare.of.Model.with.SNP

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (9): Chromosome, Position, P.value, maf, nobs, Rsquare.of.Model.without....

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (9): Chromosome, Position, P.value, maf, nobs, Rsquare.of.Model.without....

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (6): Chromosome, Position, P.value, maf, nobs, FDR_Adjusted_P-values
lgl (3): Rsquare.of.Model.without.SNP, Rsquare.of.Model.with.SNP, effect

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
results_df %>% kbl() %>%  kable_styling()
Method SNP Chromosome Position P.value maf nobs Rsquare.of.Model.without.SNP Rsquare.of.Model.with.SNP FDR_Adjusted_P-values effect
FarmCPU GlymaLee.02G228600.1.p 2 49198872 0.0000038 0.0013004 769 NA NA 0.0018691 -1.7185122
FarmCPU UWASoyPan04354 22 277 0.0000373 0.1040312 769 NA NA 0.0090673 0.1505357
FarmCPU UWASoyPan00316 22 405 0.0000813 0.1235371 769 NA NA 0.0131697 -0.1361126
FarmCPU GlymaLee.01G030900.1.p 1 3567950 0.0001897 0.4928479 769 NA NA 0.0230510 0.0837741
FarmCPU UWASoyPan00772 22 326 0.0002724 0.1976593 769 NA NA 0.0264748 0.1073770
FarmCPU GlymaLee.14G022000.1.p 14 1789365 0.0004215 0.2236671 769 NA NA 0.0341436 -0.0953602
GLM GlymaLee.02G228600.1.p 2 49198872 0.0000000 0.0013004 769 0.3795503 0.4064602 0.0000058 -1.9354957
GLM UWASoyPan04354 22 277 0.0000150 0.1040312 769 0.3795503 0.3949224 0.0036512 0.1706430
GLM UWASoyPan00772 22 326 0.0000315 0.1976593 769 0.3795503 0.3937506 0.0051105 0.1291152
GLM UWASoyPan00316 22 405 0.0000446 0.1235371 769 0.3795503 0.3932066 0.0054160 -0.1498671
GLM GlymaLee.16G111300.1.p 16 30996392 0.0001209 0.0676203 769 0.3795503 0.3916447 0.0117547 0.1830838
GLM UWASoyPan00022 22 958 0.0003783 0.0364109 769 0.3795503 0.3898773 0.0267416 0.2285028
GLM GlymaLee.01G030900.1.p 1 3567950 0.0003852 0.4928479 769 0.3795503 0.3898498 0.0267416 0.0861666
MLM GlymaLee.02G228600.1.p 2 49198872 0.0000005 0.0013004 769 0.4220320 0.4413330 0.0002584 -1.6924714
MLMM GlymaLee.02G228600.1.p 2 49198872 0.0000003 0.0013004 769 NA NA 0.0001373 NA

Ah beautiful, one NLR gene found by all methods, and a bunch of extra pangenome genes found by FarmCPU/GLM. However the one gene found by all methods has a horrible MAF so we’ll probably end up ignoring that.

results_df %>% group_by(SNP) %>% count() %>% arrange(n)
# A tibble: 8 x 2
# Groups:   SNP [8]
  SNP                        n
  <chr>                  <int>
1 GlymaLee.14G022000.1.p     1
2 GlymaLee.16G111300.1.p     1
3 UWASoyPan00022             1
4 GlymaLee.01G030900.1.p     2
5 UWASoyPan00316             2
6 UWASoyPan00772             2
7 UWASoyPan04354             2
8 GlymaLee.02G228600.1.p     4
candidates <- results_df %>% 
  group_by(SNP) %>% 
  count() %>% 
  filter(n >= 2)

candidates %>% knitr::kable()
SNP n
GlymaLee.01G030900.1.p 2
GlymaLee.02G228600.1.p 4
UWASoyPan00316 2
UWASoyPan00772 2
UWASoyPan04354 2

Let’s focus on genes found by more than one method.

This particular R-gene GlymaLee.02G228600.1.p seems to have a strong negative impact on yield (effect -1.69 in MLM, -1.94 in GLM, -1.72 in FarmCPU) but it also has a horrible MAF, normally this would get filtered in SNPs but we don’t have SNPs here. Let’s plot the yield for individuals who have vs those who don’t have those genes that appear in more than one method.

pav_table <- read_tsv('./data/soybean_pan_pav.matrix_gene.txt.gz')
Rows: 51414 Columns: 1111
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr    (1): Individual
dbl (1110): AB-01, AB-02, BR-01, BR-02, BR-03, BR-04, BR-05, BR-06, BR-07, B...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
yield <- read_tsv('./data/yield.txt')
Rows: 769 Columns: 2
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (1): Line
dbl (1): Yield

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
pav_table %>% 
  filter(Individual == 'GlymaLee.02G228600.1.p') %>% 
  pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
  inner_join(yield) %>% arrange(Presence) %>% head()
Joining, by = "Line"
# A tibble: 6 x 4
  Individual             Line    Presence Yield
  <chr>                  <chr>      <dbl> <dbl>
1 GlymaLee.02G228600.1.p USB-762        0  2.88
2 GlymaLee.02G228600.1.p AB-01          1  1.54
3 GlymaLee.02G228600.1.p AB-02          1  1.3 
4 GlymaLee.02G228600.1.p For            1  3.34
5 GlymaLee.02G228600.1.p HN001          1  3.54
6 GlymaLee.02G228600.1.p HN005          1  2.15

OK this gene is ‘boring’ - it’s lost only in a single line, and we can’t trust that. We’ll remove it.

pav_table %>% 
  filter(Individual == 'GlymaLee.02G228600.1.p') %>% 
  pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
  inner_join(yield) %>% 
  summarise(median_y= median(Yield))
Joining, by = "Line"
# A tibble: 1 x 1
  median_y
     <dbl>
1     2.18

At least this particular line with the lost gene has slightly higher yield than the median? but soooo many different reasons… Let’s remove this gene as MAF < 5%.

Let’s check the other genes.

candidates <- candidates %>% 
  filter(SNP != 'GlymaLee.02G228600.1.p')
candidates %>% knitr::kable()
SNP n
GlymaLee.01G030900.1.p 2
UWASoyPan00316 2
UWASoyPan00772 2
UWASoyPan04354 2

Visualising per-gene differences

plots <- list()
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  p <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
    inner_join(yield) %>% 
    mutate(Presence = case_when(
      Presence == 0.0 ~ 'Lost',
      Presence == 1.0 ~ 'Present'
    )) %>% 
    ggplot(aes(x=Presence, y = Yield, group=Presence)) + 
    geom_boxplot() + 
    geom_jitter(alpha=0.9, size=0.4) + 
    geom_signif(comparisons = list(c('Lost', 'Present')), 
              map_signif_level = T) +
    theme_minimal_hgrid()
    #xlab(paste('Presence', str_replace(this_cand$SNP, '.1.p',''))) # make the gene name a bit nicer
  plots[[i]] <- p
}
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
wrap_plots(plots) + 
  plot_annotation(tag_levels = 'A')

Four nice plots we have now, we’ll use those as supplementary. It’s interesting how the reference gene has a positive impact on yield, the pangenome extra gene has a negative impact, and the other two don’t do much. Then again there are many reasons why we see this outcome.

For myself, the four labels: GlymaLee.01G030900.1.p, UWASoyPan00316, UWASoyPan00772, UWASoyPan04354

Let’s also make those plots, grouped by breeding group

groups <- read_csv('./data/Table_of_cultivar_groups.csv')
Rows: 1069 Columns: 3
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Data-storage-ID, PI-ID, Group in violin table

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
groups <- groups %>% dplyr::rename(Group = `Group in violin table`)
groups <- groups %>% 
  mutate(Group = str_replace_all(Group, 'landrace', 'Landrace')) %>%
  mutate(Group = str_replace_all(Group, 'Old_cultivar', 'Old cultivar')) %>%
  mutate(Group = str_replace_all(Group, 'Modern_cultivar', 'Modern cultivar')) %>%
  mutate(Group = str_replace_all(Group, 'Wild-type', 'Wild'))

groups$Group <-
  factor(
    groups$Group,
    levels = c('Wild',
               'Landrace',
               'Old cultivar',
               'Modern cultivar')
  )
npg_col = pal_npg("nrc")(9)

col_list <- c(`Wild`=npg_col[8],
   Landrace = npg_col[3],
  `Old cultivar`=npg_col[2],
  `Modern cultivar`=npg_col[4])


plots <- list()
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  p <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
    inner_join(yield) %>% 
    inner_join(groups, by = c('Line'='Data-storage-ID')) %>% 
    mutate(Presence = case_when(
      Presence == 0.0 ~ 'Lost',
      Presence == 1.0 ~ 'Present'
    )) %>% 
    ggplot(aes(x=Presence, y = Yield, group=Presence, color=Group)) + 
    geom_boxplot() + 
    geom_jitter(alpha=0.9, size=0.4) + 
    facet_wrap(~Group) +
    geom_signif(comparisons = list(c('Lost', 'Present')), 
              map_signif_level = T) +
    theme_minimal_hgrid() +
    ylab(expression(paste('Yield [Mg ', ha ^ -1, ']'))) +
    scale_color_manual(values = col_list)

  plots[[i]] <- p
}
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
wrap_plots(plots) + 
  plot_annotation(tag_levels = 'A') +
  plot_layout(guides='collect') & theme(legend.position = 'none')
Warning in wilcox.test.default(c(2.19, 2.6, 2.74, 1.63, 1.61, 2.45, 1.21, :
cannot compute exact p-value with ties
Warning in wilcox.test.default(c(4, 2.66, 1.52, 2.47, 4.34, 2.21, 3.23, : cannot
compute exact p-value with ties
Warning in wilcox.test.default(c(2.66, 1.54, 2.21, 0.77, 2.84, 2.51, 0.89:
cannot compute exact p-value with ties
Warning in wilcox.test.default(c(4.38, 4.16, 4, 4.48, 4.12, 3.24, 2.59, : cannot
compute exact p-value with ties
Warning in wilcox.test.default(c(2.19, 2.6, 2.74, 1.63, 2.88, 2.29, 2.17, :
cannot compute exact p-value with ties
Warning in wilcox.test.default(c(3.54, 4.38, 4.16, 4.05, 4.06, 2.75, 4.27, :
cannot compute exact p-value with ties
Warning in wilcox.test.default(c(2.19, 2.66, 2.6, 2.74, 1.63, 1.61, 1.21, :
cannot compute exact p-value with ties

I also need a presence/absence percentage for all candidates

big_t <- NULL
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  t <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>%
    inner_join(groups, by = c('Line'='Data-storage-ID')) %>% group_by(Group) %>% 
    dplyr::select(Presence, Group) %>% 
    table() %>% as_tibble()
  #t <- t %>% add_column(Presence=c(0,1), .before = '.')
  t<- t %>% add_column(Gene=this_cand$SNP, .before='Presence')
  if(is.null(big_t)) {
    big_t <- t
  } else {
    big_t <- rbind(big_t, t)
  }
}

big_t %>% group_by(Group, Gene) %>% mutate(group_sum = sum(n)) %>% 
  mutate(`Percentage` = n/group_sum*100) %>% 
  dplyr::select(-group_sum) %>% 
  rename(Count=n) %>% 
  mutate(Presence = case_when(
      Presence == 0.0 ~ 'Lost',
      Presence == 1.0 ~ 'Present'
    ))  %>%
  knitr::kable(digits=2)
Gene Presence Group Count Percentage
GlymaLee.01G030900.1.p Lost Wild 29 18.47
GlymaLee.01G030900.1.p Present Wild 128 81.53
GlymaLee.01G030900.1.p Lost Landrace 359 49.65
GlymaLee.01G030900.1.p Present Landrace 364 50.35
GlymaLee.01G030900.1.p Lost Old cultivar 30 65.22
GlymaLee.01G030900.1.p Present Old cultivar 16 34.78
GlymaLee.01G030900.1.p Lost Modern cultivar 41 28.67
GlymaLee.01G030900.1.p Present Modern cultivar 102 71.33
UWASoyPan00316 Lost Wild 14 8.92
UWASoyPan00316 Present Wild 143 91.08
UWASoyPan00316 Lost Landrace 68 9.41
UWASoyPan00316 Present Landrace 655 90.59
UWASoyPan00316 Lost Old cultivar 9 19.57
UWASoyPan00316 Present Old cultivar 37 80.43
UWASoyPan00316 Lost Modern cultivar 71 49.65
UWASoyPan00316 Present Modern cultivar 72 50.35
UWASoyPan00772 Lost Wild 71 45.22
UWASoyPan00772 Present Wild 86 54.78
UWASoyPan00772 Lost Landrace 586 81.05
UWASoyPan00772 Present Landrace 137 18.95
UWASoyPan00772 Lost Old cultivar 32 69.57
UWASoyPan00772 Present Old cultivar 14 30.43
UWASoyPan00772 Lost Modern cultivar 126 88.11
UWASoyPan00772 Present Modern cultivar 17 11.89
UWASoyPan04354 Lost Wild 87 55.41
UWASoyPan04354 Present Wild 70 44.59
UWASoyPan04354 Lost Landrace 636 87.97
UWASoyPan04354 Present Landrace 87 12.03
UWASoyPan04354 Lost Old cultivar 44 95.65
UWASoyPan04354 Present Old cultivar 2 4.35
UWASoyPan04354 Lost Modern cultivar 141 98.60
UWASoyPan04354 Present Modern cultivar 2 1.40
big_t %>% group_by(Group, Gene) %>% mutate(group_sum = sum(n)) %>%
  mutate(Gene = str_replace_all(Gene, '.1.p','')) %>% 
  mutate(`Percentage` = n/group_sum*100) %>% 
  dplyr::select(-group_sum) %>% 
  filter(Presence == '1') %>% 
  mutate(Group = factor(Group, levels=c('Wild', 'Landrace', 'Old cultivar', 'Modern cultivar'))) %>% 
  ggplot(aes(x = Group, y = Percentage, group=Gene, color=Gene)) + 
  geom_line(size=1.5) +
  theme_minimal_hgrid() +
  ylab('Percentage present') +
  scale_color_brewer(palette = 'Dark2') +
  theme(axis.text.x = element_text(angle = -45, hjust=0))

and let’s also get the per-gene mean and median yield

yields <- NULL
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  this_t <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
    inner_join(yield) %>%
    inner_join(groups, by = c('Line'='Data-storage-ID')) %>% 
    group_by(Presence, Group) %>% 
    summarise(`Mean yield` = mean(Yield)) %>% 
    add_column(Gene=this_cand$SNP, .before='Presence') %>% 
    arrange(Group)
  if (is.null(yields)) {
    yields <- this_t
  } else {
    yields <- rbind(yields, this_t)
  }
}
Joining, by = "Line"
`summarise()` has grouped output by 'Presence'. You can override using the `.groups` argument.
Joining, by = "Line"
`summarise()` has grouped output by 'Presence'. You can override using the `.groups` argument.
Joining, by = "Line"
`summarise()` has grouped output by 'Presence'. You can override using the `.groups` argument.
Joining, by = "Line"
`summarise()` has grouped output by 'Presence'. You can override using the `.groups` argument.
yields %>% knitr::kable(digits=2)
Gene Presence Group Mean yield
GlymaLee.01G030900.1.p 0 Landrace 2.00
GlymaLee.01G030900.1.p 1 Landrace 2.22
GlymaLee.01G030900.1.p 0 Old cultivar 1.73
GlymaLee.01G030900.1.p 1 Old cultivar 2.27
GlymaLee.01G030900.1.p 0 Modern cultivar 3.06
GlymaLee.01G030900.1.p 1 Modern cultivar 3.28
UWASoyPan00316 0 Landrace 2.29
UWASoyPan00316 1 Landrace 2.09
UWASoyPan00316 0 Old cultivar 1.92
UWASoyPan00316 1 Old cultivar 1.90
UWASoyPan00316 0 Modern cultivar 3.42
UWASoyPan00316 1 Modern cultivar 3.06
UWASoyPan00772 0 Landrace 2.06
UWASoyPan00772 1 Landrace 2.30
UWASoyPan00772 0 Old cultivar 1.97
UWASoyPan00772 1 Old cultivar 1.74
UWASoyPan00772 0 Modern cultivar 3.27
UWASoyPan00772 1 Modern cultivar 2.89
UWASoyPan04354 0 Landrace 2.09
UWASoyPan04354 1 Landrace 2.24
UWASoyPan04354 0 Old cultivar 1.88
UWASoyPan04354 1 Old cultivar 2.31
UWASoyPan04354 0 Modern cultivar 3.20
UWASoyPan04354 1 Modern cultivar 4.34
yields %>% 
  group_by(Gene, Group) %>% 
  summarise('Yield difference when gene present' = diff(`Mean yield`)) %>% 
  knitr::kable(digits=2)
`summarise()` has grouped output by 'Gene'. You can override using the `.groups` argument.
Gene Group Yield difference when gene present
GlymaLee.01G030900.1.p Landrace 0.21
GlymaLee.01G030900.1.p Old cultivar 0.54
GlymaLee.01G030900.1.p Modern cultivar 0.22
UWASoyPan00316 Landrace -0.20
UWASoyPan00316 Old cultivar -0.01
UWASoyPan00316 Modern cultivar -0.36
UWASoyPan00772 Landrace 0.24
UWASoyPan00772 Old cultivar -0.23
UWASoyPan00772 Modern cultivar -0.39
UWASoyPan04354 Landrace 0.15
UWASoyPan04354 Old cultivar 0.43
UWASoyPan04354 Modern cultivar 1.14

Better kinship modeling

A reviewer pointed out that this post-hoc analysis does not account for kinship, so let’s make it a bit nicer by using PC1 and PC2 as covariates.

big_t <- list()
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  p <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
    inner_join(yield) %>% 
    inner_join(groups, by = c('Line'='Data-storage-ID')) %>% 
    mutate(Presence = case_when(
      Presence == 0.0 ~ 'Lost',
      Presence == 1.0 ~ 'Present'
    ))
  # now get EV1/EV2 (PC1,PC2)
  p <- p %>% left_join(tab, by=c('Line'='sample.id'))
  big_t[[this_cand$SNP]] <- tidy(lm(Yield ~ Presence + Group + EV1 + EV2, data=p)) %>% 
    filter(term == 'PresencePresent')
}
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
big_t <- bind_rows(big_t, .id='gene')
big_t %>% kbl() %>%  kable_styling()
gene term estimate std.error statistic p.value
GlymaLee.01G030900.1.p PresencePresent 0.1555618 0.0533526 2.915731 0.0036537
UWASoyPan00316 PresencePresent -0.2801745 0.0827615 -3.385325 0.0007477
UWASoyPan00772 PresencePresent 0.1374274 0.0670730 2.048924 0.0408147
UWASoyPan04354 PresencePresent 0.2813016 0.0853339 3.296480 0.0010248

All p < 0.05, just like the GWAS. Estimates are all positive except for one gene. Let’s also correct for multiple testing

big_t$FDR <- p.adjust(big_t$p.value)
big_t %>% kbl() %>%  kable_styling()
gene term estimate std.error statistic p.value FDR
GlymaLee.01G030900.1.p PresencePresent 0.1555618 0.0533526 2.915731 0.0036537 0.0073073
UWASoyPan00316 PresencePresent -0.2801745 0.0827615 -3.385325 0.0007477 0.0029908
UWASoyPan00772 PresencePresent 0.1374274 0.0670730 2.048924 0.0408147 0.0408147
UWASoyPan04354 PresencePresent 0.2813016 0.0853339 3.296480 0.0010248 0.0030745

Same as before. Now let’s run this for every single group.

bigger_t <- list()
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  p <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
    inner_join(yield) %>% 
    inner_join(groups, by = c('Line'='Data-storage-ID')) %>% 
    mutate(Presence = case_when(
      Presence == 0.0 ~ 'Lost',
      Presence == 1.0 ~ 'Present'
    ))
  p <- p %>% left_join(tab, by=c('Line'='sample.id'))
  # now iterate over the groups
  for( x in unique(p$Group)) {
    subp <- p %>% filter(Group == x)
    
    print(i)
    print(x)
    thisname <- paste(this_cand$SNP, x, sep='')
    bigger_t[[thisname]] <- tidy(lm(Yield ~ Presence + EV1 + EV2, data=subp)) %>% 
      filter(term == 'PresencePresent')
  }  
}
Joining, by = "Line"
[1] 1
[1] "Landrace"
[1] 1
[1] "Modern cultivar"
[1] 1
[1] "Old cultivar"
Joining, by = "Line"
[1] 2
[1] "Landrace"
[1] 2
[1] "Modern cultivar"
[1] 2
[1] "Old cultivar"
Joining, by = "Line"
[1] 3
[1] "Landrace"
[1] 3
[1] "Modern cultivar"
[1] 3
[1] "Old cultivar"
Joining, by = "Line"
[1] 4
[1] "Landrace"
[1] 4
[1] "Modern cultivar"
[1] 4
[1] "Old cultivar"
bigger_t <- bind_rows(bigger_t, .id='gene')
bigger_t$FDR <- p.adjust(bigger_t$p.value)
bigger_t %>% kbl() %>%  kable_styling()
gene term estimate std.error statistic p.value FDR
GlymaLee.01G030900.1.pLandrace PresencePresent 0.1411758 0.0558536 2.5276054 0.0117152 0.1054369
GlymaLee.01G030900.1.pModern cultivar PresencePresent 0.2364309 0.2425475 0.9747819 0.3341815 1.0000000
GlymaLee.01G030900.1.pOld cultivar PresencePresent 0.5199299 0.2641657 1.9681958 0.0574943 0.4599541
UWASoyPan00316Landrace PresencePresent -0.2983311 0.0949330 -3.1425447 0.0017494 0.0209928
UWASoyPan00316Modern cultivar PresencePresent -0.3305952 0.2230181 -1.4823688 0.1442775 0.8656653
UWASoyPan00316Old cultivar PresencePresent 0.1437413 0.3224778 0.4457403 0.6586956 1.0000000
UWASoyPan00772Landrace PresencePresent 0.1879880 0.0708854 2.6519981 0.0081928 0.0819276
UWASoyPan00772Modern cultivar PresencePresent -0.3719740 0.3139092 -1.1849736 0.2414154 1.0000000
UWASoyPan00772Old cultivar PresencePresent -0.2529017 0.2643518 -0.9566861 0.3456823 1.0000000
UWASoyPan04354Landrace PresencePresent 0.2581922 0.0863727 2.9892807 0.0028997 0.0318966
UWASoyPan04354Modern cultivar PresencePresent 1.3645257 0.7918797 1.7231476 0.0908042 0.6356295
UWASoyPan04354Old cultivar PresencePresent 0.5391899 0.5247666 1.0274851 0.3116649 1.0000000
bigger_t %>% filter(FDR < 0.05) %>% kbl() %>%  kable_styling()
gene term estimate std.error statistic p.value FDR
UWASoyPan00316Landrace PresencePresent -0.2983311 0.0949330 -3.142545 0.0017494 0.0209928
UWASoyPan04354Landrace PresencePresent 0.2581922 0.0863727 2.989281 0.0028997 0.0318966

OK let’s remake the above plots only with these two p-values

my_test <- function(x = NULL, y = NULL) {
  print(y)
  results <- tidy(lm(Yield ~ Presence + Group + EV1 + EV2))
  return(results)
}
plots <- list()
for(i in 1:nrow(candidates)) {
  this_cand = candidates[i,]
  p <- pav_table %>% 
    filter(Individual == this_cand$SNP) %>% 
    pivot_longer(!Individual, names_to = 'Line', values_to = 'Presence') %>% 
    inner_join(yield) %>% 
    inner_join(groups, by = c('Line'='Data-storage-ID')) %>% 
    mutate(Presence = case_when(
      Presence == 0.0 ~ 'Lost',
      Presence == 1.0 ~ 'Present'
    )) %>% 
    left_join(tab, by=c('Line'='sample.id')) %>% 
    ggplot(aes(x=Presence, 
               y = Yield, 
               group=Presence, 
               color=Group)) + 
    geom_boxplot() + 
    geom_jitter(alpha=0.9, size=0.4) + 
    facet_wrap(~Group) +
    geom_signif(comparisons = list(c('Lost', 'Present')), 
              test = 'my_test',
              map_signif_level = T) +
    theme_minimal_hgrid() +
    ylab(expression(paste('Yield [Mg ', ha ^ -1, ']'))) +
    scale_color_manual(values = col_list)

  plots[[i]] <- p
}
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
Joining, by = "Line"
# 
# wrap_plots(plots) + 
#   plot_annotation(tag_levels = 'A') +
#   plot_layout(guides='collect') & theme(legend.position = 'none')

Manhattan plots

A reviewer asked for Manhattan plots.

# slightly modified from https://danielroelfs.com/blog/how-i-create-manhattan-plots-using-ggplot/
# Thanks :) 
myplot <- function(f) {
  print(f)
  mlm <- read_csv(paste('./output/GAPIT/', f, sep=''))
  mlm <- mlm %>% filter(SNP != 'GlymaLee.02G228600.1.p')
  data_cum <- mlm %>% 
    group_by(Chromosome) %>% 
    summarise(max_bp = max(Position)) %>% 
    mutate(bp_add = lag(cumsum(max_bp), default = 0)) %>% 
    select(Chromosome, bp_add)
  
  mlm <- mlm %>% 
    inner_join(data_cum, by = "Chromosome") %>% 
    mutate(bp_cum = Position + bp_add)
  
  axis_set <- mlm %>% 
    group_by(Chromosome) %>% 
    summarize(center = mean(bp_cum))
  
  ylim <- mlm %>% 
     filter(`FDR_Adjusted_P-values` == min(`FDR_Adjusted_P-values`)) %>% 
     mutate(ylim = abs(floor(log10(`FDR_Adjusted_P-values`))) + 1) %>% 
     pull(ylim)
  
  mlm_plot <- ggplot(mlm, aes(x = bp_cum, y = -log10(`FDR_Adjusted_P-values`), 
                color = as_factor(Chromosome))) +
    geom_hline(yintercept = -log10(0.05), color = "grey40", linetype = "dashed") + 
    geom_point(alpha = 0.75) +
    scale_x_continuous(label = axis_set$Chromosome, breaks = axis_set$center) +
    scale_y_continuous(expand = c(0,0), limits = c(0, ylim)) +
    scale_color_manual(values = rep(c("#276FBF", "#183059"), unique(length(axis_set$Chromosome)))) +
    labs(x = NULL, 
         y = "-log<sub>10</sub>(p)") + 
    theme_minimal() +
    theme( 
      legend.position = "none",
      panel.border = element_blank(),
      panel.grid.major.x = element_blank(),
      panel.grid.minor.x = element_blank(),
      axis.title.y = element_markdown(),
      #axis.text.x = element_text(angle = 60, size = 8, vjust = 0.5)
    )
mlm_plot
}
files <- list.files(path='./output/GAPIT/', '*GWAS.Results.csv')
names(files) <- str_split(files, pattern = '\\.', simplify=T)[,2]
# remove MLM as there are no hits
files <- files[c('GLM','MLMM','FarmCPU')]
plot_list <- lapply(files, myplot)
[1] "GAPIT.GLM.Yield.GWAS.Results.csv"
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (9): Chromosome, Position, P.value, maf, nobs, Rsquare.of.Model.without....

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
[1] "GAPIT.MLMM.Yield.GWAS.Results.csv"
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (6): Chromosome, Position, P.value, maf, nobs, FDR_Adjusted_P-values
lgl (3): Rsquare.of.Model.without.SNP, Rsquare.of.Model.with.SNP, effect

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
[1] "GAPIT.FarmCPU.Yield.GWAS.Results.csv"
Rows: 486 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): SNP
dbl (7): Chromosome, Position, P.value, maf, nobs, FDR_Adjusted_P-values, ef...
lgl (2): Rsquare.of.Model.without.SNP, Rsquare.of.Model.with.SNP

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
result <- plot_list$GLM /  plot_list$FarmCPU + plot_annotation(tag_levels = 'A')

result

cowplot::save_plot(filename = 'output/GWAS_Manhattan.png',result, base_height = 5, base_width=8)

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:
[1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252   
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4 ggpubr_0.4.0     broom_0.7.9      patchwork_1.1.1 
 [5] ggsci_2.9        cowplot_1.1.1    ggsignif_0.6.3   forcats_0.5.1   
 [9] stringr_1.4.0    dplyr_1.0.7      purrr_0.3.4      readr_2.1.2     
[13] tidyr_1.1.4      tibble_3.1.5     ggplot2_3.3.5    tidyverse_1.3.1 
[17] ggtext_0.1.1     SNPRelate_1.26.0 gdsfmt_1.28.1    GAPIT3_3.1.0    
[21] workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0           bit64_4.0.5        lubridate_1.8.0    RColorBrewer_1.1-2
 [5] webshot_0.5.2      httr_1.4.2         rprojroot_2.0.2    tools_4.1.0       
 [9] backports_1.2.1    bslib_0.3.1        utf8_1.2.2         R6_2.5.1          
[13] DBI_1.1.1          colorspace_2.0-2   withr_2.5.0        tidyselect_1.1.1  
[17] bit_4.0.4          compiler_4.1.0     git2r_0.28.0       cli_3.2.0         
[21] rvest_1.0.2        xml2_1.3.2         labeling_0.4.2     sass_0.4.0        
[25] scales_1.1.1       systemfonts_1.0.4  digest_0.6.28      rmarkdown_2.11    
[29] svglite_2.1.0      pkgconfig_2.0.3    htmltools_0.5.2    dbplyr_2.1.1      
[33] fastmap_1.1.0      highr_0.9          rlang_0.4.12       readxl_1.3.1      
[37] rstudioapi_0.13    farver_2.1.0       jquerylib_0.1.4    generics_0.1.1    
[41] jsonlite_1.7.2     vroom_1.5.7        car_3.0-12         magrittr_2.0.1    
[45] Rcpp_1.0.7         munsell_0.5.0      fansi_0.5.0        abind_1.4-5       
[49] lifecycle_1.0.1    stringi_1.7.5      whisker_0.4        yaml_2.2.1        
[53] carData_3.0-5      grid_4.1.0         parallel_4.1.0     promises_1.2.0.1  
[57] crayon_1.4.1       haven_2.4.3        gridtext_0.1.4     hms_1.1.1         
[61] knitr_1.36         pillar_1.6.4       markdown_1.1       reprex_2.0.1      
[65] glue_1.6.2         evaluate_0.14      modelr_0.1.8       vctrs_0.3.8       
[69] tzdb_0.1.2         httpuv_1.6.3       cellranger_1.1.0   gtable_0.3.0      
[73] assertthat_0.2.1   xfun_0.27          rstatix_0.7.0      later_1.3.0       
[77] viridisLite_0.4.0  ellipsis_0.3.2