Last updated: 2020-12-11

Checks: 7 0

Knit directory: R_gene_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200917) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 83dc49a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/Brec_R1.txt
    Untracked:  data/Brec_R2.txt
    Untracked:  data/CR15_R1.txt
    Untracked:  data/CR15_R2.txt
    Untracked:  data/CR_14_R1.txt
    Untracked:  data/CR_14_R2.txt
    Untracked:  data/KS_R1.txt
    Untracked:  data/KS_R2.txt
    Untracked:  data/NBS_PAV.txt.gz
    Untracked:  data/NLR_PAV_GD.txt
    Untracked:  data/NLR_PAV_GM.txt
    Untracked:  data/PAVs_newick.txt
    Untracked:  data/PPR1.txt
    Untracked:  data/PPR2.txt
    Untracked:  data/SNPs_newick.txt
    Untracked:  data/bac.txt
    Untracked:  data/brown.txt
    Untracked:  data/cy3.txt
    Untracked:  data/cy5.txt
    Untracked:  data/early.txt
    Untracked:  data/flowerings.txt
    Untracked:  data/foregeye.txt
    Untracked:  data/height.txt
    Untracked:  data/late.txt
    Untracked:  data/mature.txt
    Untracked:  data/motting.txt
    Untracked:  data/mvp.kin.bin
    Untracked:  data/mvp.kin.desc
    Untracked:  data/oil.txt
    Untracked:  data/pdh.txt
    Untracked:  data/protein.txt
    Untracked:  data/rust_tan.txt
    Untracked:  data/salt.txt
    Untracked:  data/seedq.txt
    Untracked:  data/seedweight.txt
    Untracked:  data/stem_termination.txt
    Untracked:  data/sudden.txt
    Untracked:  data/virus.txt
    Untracked:  data/yield.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/first-analysis.Rmd) and HTML (docs/first-analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 83dc49a Philipp Bayer 2020-12-11 Trace deleted files
html dae157b Philipp Bayer 2020-09-24 Update of analysis
Rmd 1b346e9 Philipp Bayer 2020-09-22 More data!
html 1b346e9 Philipp Bayer 2020-09-22 More data!
html 0777e1d Philipp Bayer 2020-09-22 update
html e6e9b9b Philipp Bayer 2020-09-21 Build site.
Rmd c1fbbf9 Philipp Bayer 2020-09-21 wflow_publish("analysis/*")
Rmd c71005a Philipp Bayer 2020-09-18 lots changes
html c71005a Philipp Bayer 2020-09-18 lots changes
html 7d33bac Philipp Bayer 2020-09-18 Build site.
Rmd 695db1e Philipp Bayer 2020-09-18 wflow_publish(c(“analysis/eda.Rmd”, “analysis/first-analysis.Rmd”,
html ca65f66 Philipp Bayer 2020-09-18 Build site.
Rmd efd6af1 Philipp Bayer 2020-09-18 wflow_git_commit(all = T)
html efd6af1 Philipp Bayer 2020-09-18 wflow_git_commit(all = T)

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 
library(tidyverse)
library(patchwork)
library(ggsci)
library(dabestr)
library(dabestr)
library(cowplot)
library(ggsignif)

theme_set(theme_cowplot())

Introduction

npg_col = pal_npg("nrc")(9)
col_list <- c(`Wild-type`=npg_col[8],
   Landrace = npg_col[3],
  `Old cultivar`=npg_col[2],
  `Modern cultivar`=npg_col[4])

pav_table <- read_tsv('./data/soybean_pan_pav.matrix_gene.txt.gz')

NBS part

Let’s pull the NBS genes from the table

nbs <- read_tsv('./data/Lee.NBS.candidates.lst', col_names = c('Name', 'Class'))
# have to remove the .t1s 
nbs$Name <- gsub('.t1','', nbs$Name)
nbs_pav_table <- pav_table %>% filter(Individual %in% nbs$Name)
names <- c()
percs <- c()

for (i in seq_along(nbs_pav_table)){
  if ( i == 1) next
  thisind <- colnames(nbs_pav_table)[i]
  pavs <- nbs_pav_table[[i]]
  perc <- sum(pavs) / length(pavs) * 100
  names <- c(names, thisind)
  percs <- c(percs, perc)
}
nbs_res_tibb <- new_tibble(list(names = names, percs = percs))

OK what do these presence percentages look like?

ggplot(data=nbs_res_tibb, aes(x=percs)) + geom_histogram(bins=25) 

On average, 91.7701034% of NBS genes are present in each individual.

Now let’s join the table of presences to the four different types so we can group these numbers.

nbs_groups <- read_csv('./data/Table_of_cultivar_groups.csv')
nbs_joined_groups <- left_join(nbs_res_tibb, nbs_groups, by = c('names'='Data-storage-ID'))
nbs_joined_groups$`Group in violin table` <- gsub('landrace', 'Landrace', nbs_joined_groups$`Group in violin table`)
nbs_joined_groups$`Group in violin table` <- gsub('Modern_cultivar', 'Modern cultivar', nbs_joined_groups$`Group in violin table`)
nbs_joined_groups$`Group in violin table` <- gsub('Old_cultivar', 'Old cultivar', nbs_joined_groups$`Group in violin table`)

nbs_joined_groups$`Group in violin table` <- factor(nbs_joined_groups$`Group in violin table`, levels=c(NA, 'Wild-type', 'Landrace', 'Old cultivar', 'Modern cultivar'))
library(ggforce)
nbs_vio <- nbs_joined_groups %>% filter(`Group in violin table` != 'NA') %>% 
  ggplot(aes(y=percs, x=`Group in violin table`, fill=`Group in violin table`)) + 
  geom_violin(draw_quantiles = c(0.5)) +
  geom_sina(alpha=0.5) +
  geom_smooth(aes(group=1), method='glm') +
  scale_fill_manual(values=col_list)+
  guides(fill = FALSE) +
  ylim(c(87, 100))

nbs_vio

nbs_joined_groups %>% filter(`Group in violin table` != 'NA') %>% 
  ggplot(aes(y=percs, x=`Group in violin table`, fill=`Group in violin table`)) + 
  geom_smooth(aes(group=1), method='lm', se = FALSE) +
  geom_jitter() +
  scale_fill_manual(values=col_list)+
  guides(fill = FALSE)# +

  #ylim(c(0, 100))
nbs_joined_groups %>% filter(!is.na(`PI-ID`)) %>% 
  group_by(`Group in violin table`) %>% 
  summarise(min_perc = min(percs),
            max_perc = max(percs),
            mean_perc = mean(percs),
            median_perc = median(percs),
            std_perc = sd(percs)) %>% 
  knitr::kable()
Group in violin table min_perc max_perc mean_perc median_perc std_perc
Wild-type 89.50617 97.32510 93.19939 93.20988 1.4754746
Landrace 88.27160 95.67901 91.54130 91.56379 1.0312082
Old cultivar 89.09465 93.82716 91.53695 91.56379 1.0701423
Modern cultivar 88.68313 93.62140 91.01125 90.94650 0.8329189

RLK part

Let’s do the same plot with RLKs

rlk <- read_tsv('./data/Lee.RLK.candidates.lst', col_names = c('Name', 'Class', 'Subtype'))

# have to remove the .t1s 
rlk$Name <- gsub('.t1','', rlk$Name)
rlk_pav_table <- pav_table %>% filter(Individual %in% rlk$Name)
names <- c()
percs <- c()

for (i in seq_along(rlk_pav_table)){
  if ( i == 1) next
  thisind <- colnames(rlk_pav_table)[i]
  pavs <- rlk_pav_table[[i]]
  perc <- sum(pavs) / length(pavs) * 100
  names <- c(names, thisind)
  percs <- c(percs, perc)
}
rlk_res_tibb <- new_tibble(list(names = names, percs = percs))

OK what do these presence percentages look like?

ggplot(data=rlk_res_tibb, aes(x=percs)) + geom_histogram(bins=25) 

On average, 99.190418% of NBS genes are present in each individual.

Now let’s join the table of presences to the four different types so we can group these numbers.

groups <- read_csv('./data/Table_of_cultivar_groups.csv')

rlk_joined_groups <- left_join(rlk_res_tibb, groups, by = c('names'='Data-storage-ID'))
rlk_joined_groups$`Group in violin table` <- gsub('landrace', 'Landrace', rlk_joined_groups$`Group in violin table`)
rlk_joined_groups$`Group in violin table` <- gsub('Modern_cultivar', 'Modern cultivar', rlk_joined_groups$`Group in violin table`)
rlk_joined_groups$`Group in violin table` <- gsub('Old_cultivar', 'Old cultivar', rlk_joined_groups$`Group in violin table`)

rlk_joined_groups$`Group in violin table` <- factor(rlk_joined_groups$`Group in violin table`, levels=c(NA, 'Wild-type', 'Landrace', 'Old cultivar', 'Modern cultivar'))
rlk_vio <- rlk_joined_groups %>% filter(`Group in violin table` != 'NA') %>% 
  ggplot(aes(y=percs, x=`Group in violin table`, fill=`Group in violin table`)) + 
  geom_violin(draw_quantiles = c(0.5)) +
  geom_sina(alpha=0.5) +
  geom_smooth(aes(group=1), method='lm', se = FALSE) +
  scale_fill_manual(values=col_list)+
  guides(fill = FALSE)# +
  #ylim(c(87, 100))
rlk_vio

rlk_joined_groups %>% filter(!is.na(`PI-ID`)) %>% 
  group_by(`Group in violin table`) %>% 
  summarise(min_perc = min(percs),
            max_perc = max(percs),
            mean_perc = mean(percs),
            median_perc = median(percs),
            std_perc = sd(percs)) %>% 
  knitr::kable()
Group in violin table min_perc max_perc mean_perc median_perc std_perc
Wild-type 98.38022 99.74425 99.26314 99.31799 0.2177805
Landrace 98.63598 99.57374 99.16600 99.14749 0.1278145
Old cultivar 98.97698 99.40324 99.19752 99.23274 0.1199946
Modern cultivar 98.80648 99.57374 99.18922 99.14749 0.1255006

RLP part

And now with RLPs

rlp <- read_tsv('./data/Lee.RLP.candidates.lst', col_names = c('Name', 'Class', 'Subtype'))

# have to remove the .t1s 
rlp$Name <- gsub('.t1','', rlp$Name)
rlp_pav_table <- pav_table %>% filter(Individual %in% rlp$Name)
names <- c()
percs <- c()

for (i in seq_along(rlp_pav_table)){
  if ( i == 1) next
  thisind <- colnames(rlp_pav_table)[i]
  pavs <- rlp_pav_table[[i]]
  perc <- sum(pavs) / length(pavs) * 100
  names <- c(names, thisind)
  percs <- c(percs, perc)
}
rlp_res_tibb <- new_tibble(list(names = names, percs = percs))

OK what do these presence percentages look like?

ggplot(data=rlp_res_tibb, aes(x=percs)) + geom_histogram(bins=25) 

On average, 95.6496496% of NBS genes are present in each individual.

Now let’s join the table of presences to the four different types so we can group these numbers.

groups <- read_csv('./data/Table_of_cultivar_groups.csv')
rlp_joined_groups <- left_join(rlp_res_tibb, groups, by = c('names'='Data-storage-ID'))
rlp_joined_groups$`Group in violin table` <- gsub('landrace', 'Landrace', rlp_joined_groups$`Group in violin table`)
rlp_joined_groups$`Group in violin table` <- gsub('Modern_cultivar', 'Modern cultivar', rlp_joined_groups$`Group in violin table`)
rlp_joined_groups$`Group in violin table` <- gsub('Old_cultivar', 'Old cultivar', rlp_joined_groups$`Group in violin table`)

rlp_joined_groups$`Group in violin table` <- factor(rlp_joined_groups$`Group in violin table`, levels=c(NA, 'Wild-type', 'Landrace', 'Old cultivar', 'Modern cultivar'))
rlp_vio <- rlp_joined_groups %>% filter(`Group in violin table` != 'NA') %>% 
  ggplot(aes(y=percs, x=`Group in violin table`, fill=`Group in violin table`)) + 
  geom_violin(draw_quantiles = c(0.5)) +
  geom_sina(alpha=0.5) +
    geom_smooth(aes(group=1), method='lm', se = FALSE) +
  scale_fill_manual(values=col_list)+
  guides(fill = FALSE) +
  ylim(c(87, 100))
rlp_vio

rlp_joined_groups %>% filter(`Group in violin table` != 'NA') %>% 
  ggplot(aes(y=percs, x=`Group in violin table`, fill=`Group in violin table`)) + 
  geom_jitter() +
  #geom_sina(alpha=0.5) +
  scale_fill_manual(values=col_list)+
  guides(fill = FALSE) +
  ylim(c(87, 100))

rlp_joined_groups %>% filter(!is.na(`PI-ID`)) %>% 
  group_by(`Group in violin table`) %>% 
  summarise(min_perc = min(percs),
            max_perc = max(percs),
            mean_perc = mean(percs),
            median_perc = median(percs),
            std_perc = sd(percs)) %>% 
  knitr::kable()
Group in violin table min_perc max_perc mean_perc median_perc std_perc
Wild-type 93.33333 98.33333 96.34112 96.11111 0.8985510
Landrace 90.00000 98.33333 95.53711 95.55556 0.9230701
Old cultivar 93.88889 97.77778 95.45894 95.55556 0.9019439
Modern cultivar 93.88889 97.22222 95.44678 95.55556 0.7169931

Plotting together

nbs_vio + rlk_vio + rlp_vio

Stats - Dabayes

I want to know whether the groups are statistically significantly different. First let’s use dabestr

NBS

Let’s run dabestr first:

nbs_multi.two.group.unpaired <- 
  nbs_joined_groups %>% filter(!is.na(`PI-ID`)) %>% 
  dabest(`Group in violin table`, percs, 
         idx = list(c("Wild-type", "Landrace"),
                    c('Old cultivar', 'Modern cultivar')),
         paired = FALSE)
nbs_multi.two.group.unpaired
dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0
=============================================================

Good morning!
The current time is 11:04 AM on Friday December 11, 2020.

Dataset    :  .
The first five rows are:
# A tibble: 5 x 4
  names  percs `PI-ID`  `Group in violin table`
  <chr>  <dbl> <chr>    <fct>                  
1 AB-01   91.6 PI458020 Landrace               
2 AB-02   93.4 PI603713 Landrace               
3 DT2000  92.0 PI635999 Modern cultivar        
4 For     92.2 PI548645 Modern cultivar        
5 HN001   92.2 PI518664 Modern cultivar        

X Variable :  Group in violin table
Y Variable :  percs

Effect sizes(s) will be computed for:
  1. Landrace minus Wild-type
  2. Modern cultivar minus Old cultivar
nbs_multi.two.group.unpaired.meandiff <- mean_diff(nbs_multi.two.group.unpaired)
nbs_multi.two.group.unpaired.meandiff
dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0
=============================================================

Good morning!
The current time is 11:04 AM on Friday December 11, 2020.

Dataset    :  .
X Variable :  Group in violin table
Y Variable :  percs

Unpaired mean difference of Landrace (n = 723) minus Wild-type (n = 157)
 -1.66 [95CI  -1.9; -1.41]

Unpaired mean difference of Modern cultivar (n = 143) minus Old cultivar (n = 46)
 -0.526 [95CI  -0.875; -0.2]


5000 bootstrap resamples.
All confidence intervals are bias-corrected and accelerated.
plot(nbs_multi.two.group.unpaired.meandiff, color.column=`Group in violin table`,
     rawplot.ylabel = 'Presence (%)', show.legend=FALSE)

RLK

rlk_multi.two.group.unpaired <- 
  rlk_joined_groups %>% filter(!is.na(`PI-ID`)) %>% 
  dabest(`Group in violin table`, percs, 
         idx = list(c("Wild-type", "Landrace"),
                    c('Old cultivar', 'Modern cultivar')),
         paired = FALSE)
rlk_multi.two.group.unpaired
dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0
=============================================================

Good morning!
The current time is 11:04 AM on Friday December 11, 2020.

Dataset    :  .
The first five rows are:
# A tibble: 5 x 4
  names  percs `PI-ID`  `Group in violin table`
  <chr>  <dbl> <chr>    <fct>                  
1 AB-01   99.5 PI458020 Landrace               
2 AB-02   99.1 PI603713 Landrace               
3 DT2000  99.3 PI635999 Modern cultivar        
4 For     99.1 PI548645 Modern cultivar        
5 HN001   99.1 PI518664 Modern cultivar        

X Variable :  Group in violin table
Y Variable :  percs

Effect sizes(s) will be computed for:
  1. Landrace minus Wild-type
  2. Modern cultivar minus Old cultivar
rlk_multi.two.group.unpaired.meandiff <- mean_diff(rlk_multi.two.group.unpaired)
rlk_multi.two.group.unpaired.meandiff
dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0
=============================================================

Good morning!
The current time is 11:04 AM on Friday December 11, 2020.

Dataset    :  .
X Variable :  Group in violin table
Y Variable :  percs

Unpaired mean difference of Landrace (n = 723) minus Wild-type (n = 157)
 -0.0971 [95CI  -0.132; -0.0611]

Unpaired mean difference of Modern cultivar (n = 143) minus Old cultivar (n = 46)
 -0.00831 [95CI  -0.0479; 0.0308]


5000 bootstrap resamples.
All confidence intervals are bias-corrected and accelerated.
plot(rlk_multi.two.group.unpaired.meandiff, color.column=`Group in violin table`,
     rawplot.ylabel = 'Presence (%)', show.legend=FALSE)

No difference between old and modern cultivars!

RLP

rlp_multi.two.group.unpaired <- 
  rlp_joined_groups %>% filter(!is.na(`PI-ID`)) %>% 
  dabest(`Group in violin table`, percs, 
         idx = list(c("Wild-type", "Landrace"),
                    c('Old cultivar', 'Modern cultivar')),
         paired = FALSE)
rlp_multi.two.group.unpaired
dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0
=============================================================

Good morning!
The current time is 11:04 AM on Friday December 11, 2020.

Dataset    :  .
The first five rows are:
# A tibble: 5 x 4
  names  percs `PI-ID`  `Group in violin table`
  <chr>  <dbl> <chr>    <fct>                  
1 AB-01   95   PI458020 Landrace               
2 AB-02   95.6 PI603713 Landrace               
3 DT2000  95   PI635999 Modern cultivar        
4 For     95   PI548645 Modern cultivar        
5 HN001   95.6 PI518664 Modern cultivar        

X Variable :  Group in violin table
Y Variable :  percs

Effect sizes(s) will be computed for:
  1. Landrace minus Wild-type
  2. Modern cultivar minus Old cultivar
rlp_multi.two.group.unpaired.meandiff <- mean_diff(rlp_multi.two.group.unpaired)
rlp_multi.two.group.unpaired.meandiff
dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0
=============================================================

Good morning!
The current time is 11:04 AM on Friday December 11, 2020.

Dataset    :  .
X Variable :  Group in violin table
Y Variable :  percs

Unpaired mean difference of Landrace (n = 723) minus Wild-type (n = 157)
 -0.804 [95CI  -0.965; -0.651]

Unpaired mean difference of Modern cultivar (n = 143) minus Old cultivar (n = 46)
 -0.0122 [95CI  -0.294; 0.265]


5000 bootstrap resamples.
All confidence intervals are bias-corrected and accelerated.
plot(rlp_multi.two.group.unpaired.meandiff, color.column=`Group in violin table`,
     rawplot.ylabel = 'Presence (%)', show.legend=FALSE)

Again, no difference between old and modern cultivars!

Stats - classic t-test

NBS

nbs_joined_groups %>% 
  filter( !is.na(`PI-ID`) ) %>%
    ggplot(aes(x=`Group in violin table`, y = percs,
               fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE)

RLP

rlp_joined_groups %>% 
  filter( !is.na(`PI-ID`) ) %>%
    ggplot(aes(x=`Group in violin table`, y = percs,
               fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE)

RLK

rlk_joined_groups %>% 
  filter( !is.na(`PI-ID`) ) %>%
    ggplot(aes(x=`Group in violin table`, y = percs,
               fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE)


sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)

Matrix products: default

locale:
[1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252   
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggforce_0.3.1        ggsignif_0.6.0       cowplot_1.0.0       
 [4] dabestr_0.3.0        magrittr_1.5         ggsci_2.9           
 [7] patchwork_1.0.0      forcats_0.5.0        stringr_1.4.0       
[10] dplyr_1.0.0          purrr_0.3.4          readr_1.3.1         
[13] tidyr_1.1.0          tibble_3.0.2         ggplot2_3.3.2       
[16] tidyverse_1.3.0      workflowr_1.6.2.9000

loaded via a namespace (and not attached):
 [1] nlme_3.1-148       fs_1.5.0.9000      lubridate_1.7.9    RColorBrewer_1.1-2
 [5] httr_1.4.2         rprojroot_1.3-2    tools_3.6.3        backports_1.1.10  
 [9] utf8_1.1.4         R6_2.4.1           vipor_0.4.5        DBI_1.1.0         
[13] mgcv_1.8-31        colorspace_1.4-1   withr_2.2.0        tidyselect_1.1.0  
[17] processx_3.4.4     compiler_3.6.3     git2r_0.27.1       cli_2.0.2         
[21] rvest_0.3.5        xml2_1.3.2         labeling_0.3       scales_1.1.1      
[25] callr_3.4.4        digest_0.6.25      rmarkdown_2.3      pkgconfig_2.0.3   
[29] htmltools_0.5.0    dbplyr_1.4.4       highr_0.8          rlang_0.4.7       
[33] readxl_1.3.1       rstudioapi_0.11    farver_2.0.3       generics_0.0.2    
[37] jsonlite_1.7.1     Matrix_1.2-18      Rcpp_1.0.5         ggbeeswarm_0.6.0  
[41] munsell_0.5.0      fansi_0.4.1        lifecycle_0.2.0    stringi_1.5.3     
[45] whisker_0.4        yaml_2.2.1         MASS_7.3-51.6      plyr_1.8.6        
[49] grid_3.6.3         blob_1.2.1         promises_1.1.1     crayon_1.3.4      
[53] lattice_0.20-41    haven_2.3.1        splines_3.6.3      hms_0.5.3         
[57] knitr_1.29         ps_1.3.4           pillar_1.4.4       boot_1.3-25       
[61] reprex_0.3.0       glue_1.4.2         evaluate_0.14      getPass_0.2-2     
[65] modelr_0.1.8       vctrs_0.3.1        tweenr_1.0.1       httpuv_1.5.4      
[69] cellranger_1.1.0   gtable_0.3.0       polyclip_1.10-0    assertthat_0.2.1  
[73] xfun_0.17          broom_0.5.6        later_1.1.0.1      beeswarm_0.2.3    
[77] ellipsis_0.3.1